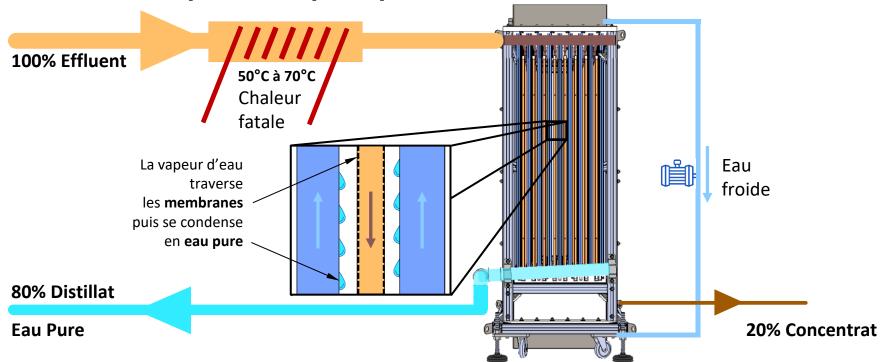


Dépollution d'effluents industriels et circularisation d'eau de process sobre en énergie


VERS UNE INDUSTRIE PLUS DURABLE

Les règlements environnementaux se durcissent et la pression hydrique s'intensifie

- Il faut organiser le traitement des eaux industrielles (PFAS, composés ioniques et organiques,...)
- Il faut réduire la consommation d'eau pour anticiper les prochaines pénuries
- Il faut continuer de réduire l'empreinte carbone

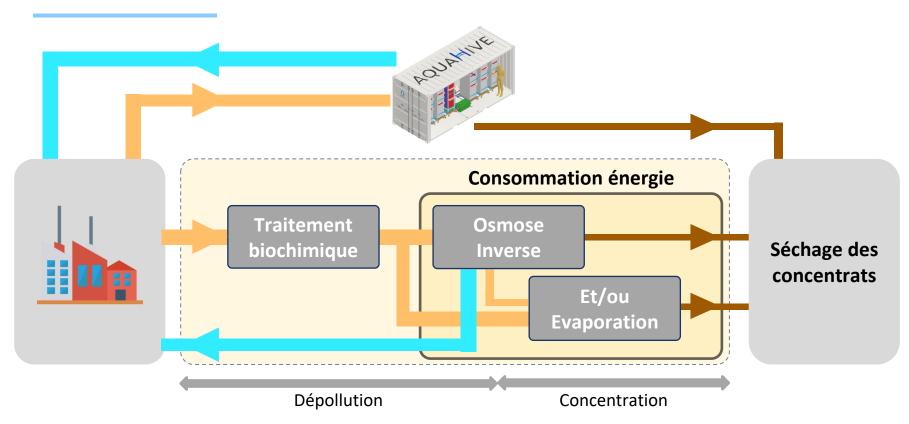
LA SOLUTION AQUAHIVE®

Extraction de vapeur d'eau par séparation membranaire

CARACTÉRISTIQUES

- Filtre tous les polluants y compris organiques & PFAS
- Concentration jusqu'à 80% des effluents pollués
- Pureté élevée de l'eau en sortie en 1 seule passe : 5-9 μS
- Haute efficacité énergétique grâce à la chaleur fatale basse température (dès 50°C)

AVANTAGES


- Sans pré-traitement chimique ou biologique de l'effluent
- Maintenance simplifiée des membranes : fonctionnement à pression atmosphérique et matériaux standards
- Capable de traiter différentes sources d'effluents (eau de process, eau de lavage, eau de pluie, etc.) sans changement de configuration ni de membrane
- Financement possible avec CEE et/ou Agences de l'eau

IMPLANTATION OPERATIONNELLE

Caractéristique	Unité	Valeur
Débit entrant	m³ / jour	3,0
Débit distillat	m³ / jour	2,4
Qualité distillat	μS.cm-1	5-9
Concentration	Distillat/Effluent	5
Nbre modules		4
Surface container	m2	15
Consommation (avec chaleur fatale)	kWh/m3 effluent	1,0
Consommation (sans chaleur fatale)	kWh/m3 effluent	160

SIMPLIFIER LE TRAITEMENT DES EFFLUENTS

COMPARATIF

Technologie ¢	AQUAHIVE®	Osmose inverse	Nanofiltration / Ultrafiltration	Évapo-concentration sous vide
Polluants 💠	✓ Prétraitement faible ✓ Maintenance allégée	Prétraitements complexesMaintenance élevée	Prétraitement moyen Maintenance moyenne	∳ Prétraitement moyen à élevé∳ Maintenance moyenne à élevée
Sels dissous / Chlorures / Salinité / SEC-SEH	✓ Très efficace	▼Très efficace	⚠ Peu efficace	✓ Très efficace
Métaux lourds (Pb, Cd, Zn, Ni, Cu)	✓ Très efficace	✓ Très bon rejet	▲ Moyenne	✓ Très efficace
DCO/DBO5	Réduction forte	▼ Efficace	⚠ Peu efficace	✓ Très efficace
NTK (Azote organique + ammoniacal)	⚠ NH ₃ volatile selon pH/T°	☑ Très efficace	▲ Moyenne	▲ Dépend de la volatilité
NOx (Nitrates / Nitrites)	▲ Dépend de la volatilité	▼ Très efficace	▲ Moyenne	▲ Moyenne
Phosphore total (Pt)	✓ Très efficace	▼ Très efficace	▲ Moyenne	Rétention dans concentrat
HCT (Hydrocarbures Totaux)	✓ Très efficace	▲ Moyenne	⚠ Peu efficace	Efficace non volatils
Organo-halogénés (AOX, solvants chlorés)	⚠ Dépend de la volatilité	☑ Très bon rejet	⚠ Peu efficace	▲ Dépend de la volatilité
Organo-aromatiques (PCB) et Organo-polycycliques (HAP)	✓ Très efficace	✓ Efficace	⚠ Peu efficace	✓ Retenus concentrat

UNITÉ PILOTE

Site de distillation d'alcool alimentaire

Application:

- Traitement des flegmasses en sortie de distillation avant évacuation vers la station de traitement
- Circularisation de l'eau pure sans composés organiques vers les processus de génération de vapeur

Paramètres de fonctionnement

- Température solution froide : 20°C (fourni par le réseau)
- Température effluent chaud : 60°C (flegmasses déjà chauds)

STEM SAS

UNITÉ PILOTE

Résultats et Analyse

Des flegmasses chauds (55-60°C) sont dirigés vers le pilote AQUAHIVE®. Au bout de quelques heures de fonctionnement, l'eau distillée produite par le pilote est récoltée et analysée.

Paramètre analysé	Flegmasses en entrée	Eau distillée en sortie
рН	6,594	6,090
Conductivité (μS.cm ⁻¹)	129,5	5,4
Chlorures (ppm)	0,14	0,07
Sulfates (ppm)	17,49	0,33
DCO (mg/L)	179	<20

CONCLUSION

La meilleure solution pour réduire significativement la facture de traitement des effluents industriels chargés tout en améliorant sa sobriété hydrique

Nous contacter : sales@stem-tech.fr